
International Journal of Heat and Mass Transfer 48 (2005) 1534–1542

www.elsevier.com/locate/ijhmt
Viscoelastic boundary layer flow and heat transfer
over an exponential stretching sheet

Sujit Kumar Khan *, Emmanuel Sanjayanand

Department of Mathematics, Gulbarga University, Gulbarga 585 106, Karnataka, India

Received 10 March 2004; received in revised form 8 October 2004

Available online 26 January 2005
Abstract

Viscoelastic boundary layer flow and heat transfer over an exponential stretching continuous sheet have been exam-

ined in this paper. Approximate analytical similarity solution of the highly non-linear momentum equation and conflu-

ent hypergeometric similarity solution of the heat transfer equation are obtained. Accuracy of the analytical solution

for stream function is verified by numerical solutions obtained by employing Runge–Kutta fourth order method with

shooting. These solutions involve an exponential dependent of stretching velocity, prescribed boundary temperature

and prescribed boundary heat flux on the flow directional coordinate. The effects of various physical parameters like

viscoelastic parameter, Prandtl number, Reynolds number, Nusselt number and Eckert number on various momentum

and heat transfer characteristics are discussed in detail in this work.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerous applications of viscoelastic fluids in

several industrial manufacturing processes have led to

renewed interest among researchers to investigate visco-

elastic boundary layer flow over a stretching plastic

sheet (Rajagopal et al. [1,2], Dandapat and Gupta [3],

Rollins and Vajravelu [4], Andersson [5], Lawrence

and Rao [6], Char [7] and Rao [8]). Some of the typical

applications of such study are polymer sheet extrusion

from a dye, glass fiber and paper production, drawing

of plastic films etc. A great deal of literature is available
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including those cited above on the two-dimensional vis-

coelastic boundary layer flow over a stretching surface

where the velocity of the stretching surface is assumed

linearly proportional to the distance from a fixed origin.

However, Gupta and Gupta [9] have pointed out that

realistically stretching of the sheet may not necessarily

be linear. This situation was dealt by Kumaran and

Ramanaiah [10] in their work on boundary layer flow

over a quadratic stretching sheet. But their work was

confined to the viscous fluid flow over stretching sheet.

One of the important aspects in this theoretical study

is the investigation of heat transfer processes. This is due

to the fact that the rate of cooling influences a lot to the

quality of the product with desired characteristics. In

view of this Ali [11] investigated thermal boundary layer

by considering a power law stretching surface. A

new dimension has been added in this investigation

by Elbashbeshy [12] who examined the flow and heat
ed.
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transfer characteristics by considering exponentially

stretching continuous surface. Elbashbeshy [12] consid-

ered an exponential similarity variable and exponential

stretching velocity distribution on the coordinate consid-

ered in the direction of stretching. However, the works

of Ali [11] and Elbashbeshy [12] are confined to the

study of viscous fluid flow only.

Since, in reality most of the fluids considered in

industrial applications are more non-Newtonian in nat-

ure, specially of viscoelastic type than viscous type, we

extend the work of Elbashbeshy [12] to viscoelastic fluid

flow and heat transfer. Approximate analytical similar-

ity solutions are obtained for velocity distribution by

transforming highly non-linear differential equation into

Riccati type and then solving this sequentially. Similar-

ity solution for temperature is obtained in the form of

confluent hypergeometric function for non-isothermal

boundary conditions of both the types (1) prescribed

surface temperature (PST) of exponential order and (2)

prescribed boundary heat flux (PHF) of exponential

order. The aim of the article is to analyse the effect of

various physical parameters like viscoelastic parameter,

Prandtl number, Reynolds number, Nusselt number

and Eckert number on various momentum and heat

transfer characteristics of boundary layer flow of visco-

elastic second-order fluid over an exponential stretching

continuous surface.
2. Formulation of the problem

The constitutive equation satisfied by second-order

fluid was given by Coleman and Noll [13], following

the postulates of gradually fading memory, as

T ¼ �pI þ lA1 þ a1A2 þ a2A
2
1 ð2:1Þ

where T is the Cauchy stress tensor, �pI is the spherical

stress due to constraint of incompressibility, l is the

dynamics viscosity, a1,a2 are the material moduli. A1

and A2 are the first two Rivlin–Ericksen tensors and they

are defined as

A1 ¼ ðgradqÞ þ ðgradqÞT ð2:2Þ

A2 ¼
dA1

dt
þ A1ðgradqÞ þ ðgradqÞT � A1 ð2:3Þ

The model Eq. (2.1) was derived by considering up

to second-order approximation of retardation parame-

ter. Dunn and Fosdick [14] have shown that this

model equation is invariant under transformation

and thereby they concluded this model as an exact

model in which the material moduli must satisfy the

restrictions:

l P 0; a1 P 0; a1 þ a2 ¼ 0 ð2:4Þ
The fluid modeled by Eq. (2.1) with the relationship

(2.4) is compatible with the thermodynamics. The third

relation is the consequence of satisfying the Clausius–

Duhem inequality by fluid motion and the second rela-

tion arises due to the assumption that specific Helmholtz

free energy of the fluid takes its minimum values in equi-

librium. But recent experimental results for most of the

non-Newtonian fluids which assumed to be second-

order have contradicted the above relations of Eq.

(2.4). Fosdick and Rajagopal [15] have shown, by using

the data reduction from experiments, that in the case of

a second-order fluid the following relation should holds.

l P 0; a1 6 0; a1 þ a2 6¼ 0 ð2:5Þ

They also found that the fluids modeled by Eq. (2.1)

with the relationship (2.5) exhibit some anomalous

behaviour. A detail review on this controversial issue

concerning the status of fluid is recorded in the work

of Dunn and Rajagopal [16]. Now, generally the fluid

satisfied the model Eq. (2.1) with a < 0 is termed as

second- order fluid and with a > 0 is termed as second

grade fluid (Rajagopal et al. [2]). Although second-order

fluid, obeying model Eq. (2.1) with a1 < a2, a1 < 0,

exhibits some undesirable instability characteristics

(Fosdick and Rajagopal [15]) the second-order approxi-

mation is valid at low shear rate (Rajagopal et al. [2]).

A steady state two-dimensional boundary layer flow

of incompressible second-order viscoelastic fluid over a

stretching sheet has been considered for investigation.

Boundary is assumed to be moving axially with a veloc-

ity of exponential order in axial distance by the applica-

tion of two equal and opposite forces along x-axis

keeping the origin fixed and generating the boundary

layer type of flow. We take into account of frictional

heating due to viscous dissipation as the fluid considered

for analysis is of non-Newtonian type. The governing

boundary layer equations for momentum and heat

transfer in such flow situations (Cortell [17] and

Rajagopal et al. [1]), in the usual form, are

ou
ox

þ ov
oy

¼ 0 ð2:6Þ

u
ou
ox

þ v
ou
oy

¼ c
o2u
oy2

� k0 u
o3u

oxoy2
þ v

o3u
oy3

� ou
oy

o2u
oxoy

þ ou
ox

o2u
oy2

� �
ð2:7Þ

u
oT
ox

þ v
oT
oy

¼ a
o2T
oy2

þ l
qcp

ou
oy

� �2

ð2:8Þ

Here u and v are the velocity components in x and y

direction respectively, c is the kinematic coefficient of

viscosity, k0 ¼ �a1
q is the elastic parameter. Hence, in

the case of second-order fluid flow k0 takes positive
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value as a1 takes negative value, a ¼ k
qcp

is the thermal

diffusivity, k is the thermal conductivity and other quan-

tities have their usual meanings. In deriving Eq. (2.7) it is

assumed that the normal stress is of the same order of

magnitude as that of the shear stress, in addition to

usual boundary layer approximations. Eq. (2.8) is the

thermal boundary layer equation, which takes into ac-

count the viscous dissipation (the last term in Eq.

(2.8)). However, we assume that the fluid possesses

strong viscous property in comparison with the elastic

property. With this assumption we neglect the contribu-

tion of heat due to elastic deformation.

2.1. Boundary conditions on velocity

For the present physical problem, where the stretch-

ing of the boundary surface is assumed to be such that

the flow directional velocity is of exponential order of

the flow directional coordinate, we employ the following

boundary conditions (Elbashbeshy [12])

u ¼ UwðxÞ ¼ U 0 exp
x
l

� �
; v ¼ 0 at y ¼ 0

u ¼ 0; uy ¼ 0 as y ! 1
ð2:9Þ

Here U0 is a constant, l is the reference length and the

suffix y represents differentiation with respect to y. It is

to note that the first three boundary conditions pre-

scribed by Eq. (2.9) are not sufficient to solve the prob-

lem uniquely. In this regard, let us have a glimpse on the

existing available literature. A critical review on the

boundary conditions and the existence and uniqueness

of the solution have been given by Rajagopal [18]. Most

of the available literature on boundary layer flow of a

viscoelastic fluid over linearly stretching sheets deal with

the three boundary conditions on velocity, which are

one less than the number required to solve the problem

uniquely (Rajagopal et al. [1,2], Rollins and Vajravelu

[4], Andersson [5], Cortell [17] and Mahapatra and Gup-

ta [19]). The augmentation of the boundary condition

has also been discussed in the work of Rajagopal and

Gupta [20]. Troy et al. [21] derived unique solution of

the problem containing exponential terms of similarity

variable. Later Chang [22] showed that the solution

was not unique and derived another closed form of solu-

tion. Subsequently, Lawrence and Rao [6] presented a

general method and derived both the non-unique solu-

tions. Among all the solutions the solution given by

Troy et al. [21] containing exponential term is physically

realistic (Lawrence and Rao [6]) as slightly elastic fluid

(assigning small value of elastic parameter in the equa-

tion) produces a boundary layer only slightly altered in

its dimensions from the viscous one.

In view of the above discussions on boundary condi-

tions we present in the next section the physically realis-

tic sequential similarity solutions of viscoelastic

boundary layer Eq. (2.7).
3. Solution of the momentum equation

Eq. (2.7) may be rewritten in terms of stream func-

tion w(x,y) which satisfies the equation of continuity

(2.6). Hence

u ¼ ow
oy

; v ¼ � ow
ox

ð3:1Þ

Stream function w(x,y) is defined as

wðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2clU 0

p
f ðgÞ exp x

2l

� �
ð3:2Þ

g ¼ y

ffiffiffiffiffiffiffi
U 0

2cl

s
exp

x
2l

� �
ð3:3Þ

Here f is the dimensionless stream function and g is the

similarity variable. Substitution of Eq. (3.2) in Eq. (2.7)

results in a fourth order non-linear ordinary differential

equation of the form

2f 2
g � ff gg ¼ fggg � k
1 3f gfggg �

1

2
ff gggg �

3

2
f 2
gg


 �
ð3:4Þ

where k
1 ¼
k0Uw

cl is the dimensionless viscoelastic

parameter.

The corresponding boundary conditions on f are of

the form

f ¼ 0; f g ¼ 1 at g ¼ 0

fg ¼ 0; f gg ¼ 0 as g ! 1
ð3:5Þ

Integrating Eq. (3.4), we obtain

fgg þ ff g

¼ �S þ
Z g

0

3f 2
g þ k
1 3f gfggg �

1

2
ff gggg �

3

2
f 2
gg

� �
 �
dg

ð3:6Þ

where S = �f00(0).

For g ! 1, we get

S ¼
Z g

0

3f 2
g þ k
1 3f gfggg �

1

2
ff gggg �

3

2
f 2
gg

� �
 �
dg ð3:7Þ

Integrating Eq. (3.6) once more, we get

fg þ
1

2
f 2 ¼ 1� Sg þ

Z g

0

Z g2

0

3f 2
g1
þ k
1 3f g1

fg1g1g1

�


� 1

2
ff g1g1g1g1

� 3

2
f 2
g1g1

�
dg1

�
dg2 ð3:8Þ

This equation may be solved by substituting suitable

zero-order approximation f ð0Þ
g ðgÞ for fg(g) on the

R.H.S. Hence the solution procedure is reduced to

the sequential solutions of the Riccati-type equation of

the form

f ðnÞ
g þ 1

2
f ðnÞ2 ¼ R:H:S f ðn�1Þ

g ; f ðn�1Þ
gg ; f ðn�1Þ

ggg ; f ðn�1Þ
gggg

� �
ð3:9Þ
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We assume zero-order approximation of fg(g) as

f ð0Þ
g ðgÞ ¼ expð�S0gÞ ð3:10Þ

which satisfies the condition at infinity.

Integrating the expression in Eq. (3.10) we get

f ð0ÞðgÞ ¼ 1� expð�S0gÞ
S0

ð3:11Þ

Now we substitute all the derivatives of zero-order

approximation f (0)(g) into R.H.S of Eq. (3.8) and as-

sume that first-order iteration f (1)(g) on the L.H.S. of

Eq. (3.8) satisfies the boundary conditions of (3.5).

Hence we get

S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2 1� k
1
 �

s
; f ð0Þ

gg ð0Þ ¼ �S0 ð3:12Þ

Here, the equation for first-order iteration f (1)(g) takes
the form

f ð1Þ
g þ 1

2
f ð1Þ2 ¼ 1þ

3þ k
1S
2
0

 �
4S2

0

ðe�2S0g � 1Þ

þ k
1
2
ðe�S0g � 1Þ ð3:13Þ
which is a non-linear Riccati type equation and can be

solved for f (1)(g) as a function of confluent hypergeo-

metric function. However, we take zero-order approxi-

mation f (0)(g) for solving the energy equation in the

next section. This solution would enable us to obtain

analytical solution of energy equation in the form of

confluent hypergeometric function.

The dimensionless skin-friction coefficient Cf is

expressed

Cf ¼ �
c ou
oy � k0 u o2u

ox oy � 2 ou
oy

ov
oy

n o� �
U 2

0 exp
2x
l

 � at y ¼ 0

¼ S0ffiffiffiffiffiffiffiffi
2Re

p 1� 7

2
k
1


 � ð3:14Þ

where Re ¼ Uwl
c

is the Reynolds number.
4. Solution of the heat transfer equation

In order to solve the temperature Eq. (2.8) we con-

sider two general cases of non-isothermal temperature

boundary conditions, namely:

(A) Boundary with prescribed exponential order surface

temperature (PST) and

(B) Boundary with prescribed exponential order heat

flux (PHF).
4.1. Case A: prescribed exponential order surface

temperature (PST)

In PST case we employ the following surface bound-

ary conditions on temperature

T ¼ T w ¼ T1 þ T 0 exp
m0x
2l

� �
at y ¼ 0

T ¼ T1 as y ! 1
ð4:1Þ

where m0 and T0 are the parameters of temperature dis-

tribution on the stretching surface and T1 is the temper-

ature for away from the stretching sheet.

In order to obtain similarity solution for temperature

we define dimensionless temperature variable as follows:

hðgÞ ¼ T � T1

T w � T1

where Tw � T1 is given by Eq. (4.1). With this the

dimensional energy equation (2.8) takes the following

non-dimensional form.

hgg þ Prf hg � Prm0fgh ¼ �PrEf 2
gg ð4:2Þ

where Pr ¼ c
a is the Prandtl number and E ¼ U2

0

cpT 0
ðUw

U0
Þ
4�m0
2

is the Eckert number Boundary conditions (4.1) of tem-

perature, in non-dimensional form, are

hð0Þ ¼ 1

hð1Þ ¼ 0
ð4:3Þ

We proceed to solve Eq. (4.2) by using zero-order

approximations of f and fg. Further we introduce the

new variable

n ¼ � Pr

S2
0

expð�S0gÞ ð4:4Þ

Substitution of Eq. (4.4) in Eqs. (4.2) and (4.3) has led to

the following boundary value problem.

nhnn þ ð1� Pr
 � nÞhn þ m1h ¼ �ES2
0

Pr

n ð4:5Þ

hðnÞ ¼ 1 at n ¼ �Pr


hðnÞ ¼ 0 at n ¼ 0
ð4:6Þ

where

Pr
 ¼ Pr

S2
0

is the modified Prandtl number ð4:7Þ

The solution of (4.5) is assumed in the form

hðnÞ ¼ hcðnÞ þ hpðnÞ ð4:8Þ

where hc(n) is the complementary solution and hp(n)
stands for particular integral. Making use of the bound-

ary conditions (4.6) we obtain complementary solution

of Eq. (4.5) in the following form of confluent hypergeo-

metric function
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hcðnÞ ¼ A1n
Pr
MðPr
 � m0; Pr
 þ 1; nÞ ð4:9Þ

Closed form particular solution exists if only we choose

m0 = 2 and that is obtained as

hpðnÞ ¼
�ES2

0

2Pr
ð2� Pr
Þ n2 ð4:10Þ

Making use of the boundary conditions of Eq. (4.6) and

rewriting the solution in variable g, we get

hðgÞ ¼ hcðgÞ þ hpðgÞ

¼ ð1� C1Þe�S0Pr
gMðPr
 � 2; Pr
 þ 1;�Pr
e�S0gÞ
MðPr
 � 2; Pr
 þ 1;�Pr
Þ

þ C1e
�2S0g

ð4:11aÞ

where

C1 ¼
�ES2

0Pr



2ð2� Pr
Þ ð4:11bÞ

where Kummer�s function M is defined by

Mða0; b0; zÞ ¼ 1þ
X1
n¼1

ða0Þnzn
ðb0Þnn!

ða0Þn ¼ a0ða0 þ 1Þða0 þ 2Þ � � � ða0 þ n� 1Þ
ðb0Þn ¼ b0ðb0 þ 1Þðb0 þ 2Þ � � � ðb0 þ n� 1Þ

ð4:12Þ

Dimensionless wall temperature gradient hg(0) is ob-

tained as:

hgð0Þ ¼ ð1�C1ÞS0Pr

Pr
 � 2

Pr
 þ 1

� �
M Pr
 � 1;Pr
 þ 2;�Pr
ð Þ
M Pr
 � 2;Pr
 þ 1;�Pr
ð Þ � 1


 �
� 2C1S0 ð4:13Þ

It is convenient to analysis heat transfer by means of

dimensionless number of temperature gradient, known

as Nusselt number. The Nusselt number Nu in the pres-

ent case is derived as

Nu ¼ x
ðT w � T1Þ

oT
oy

� �
y¼0

¼ hgð0Þ
ffiffiffiffiffi
x
2l

r ffiffiffiffiffiffiffi
Rex

p
ð4:14Þ

where Rex is the local Reynolds number and it is defined

as

Rex ¼
Uwx

c

C2 ¼
ð1� 2C1S0Þ

S0Pr
MðPr
 � 2; Pr
 þ 1;�Pr
Þ � ðPr
 � 2Þ
ðPr
 þ 1Þ Pr


S0MðPr
 �
4.2. Case B: prescribed exponential order power

law heat flux (PHF)

In this heating process we employ the following pre-

scribed exponential law heat flux boundary conditions.

� k
oT
oy

� �
w

¼ T 1 exp
m1 þ 1

2l

� �
x at y ¼ 0

T ! T1 as y ! 1
ð4:15Þ

where m1 and T1 are the parameters of temperature dis-

tribution on the stretching surface. In order to obtain

similarity solution for temperature we define dimension-

less temperature variable in PHF case as follows

gðgÞ ¼ T � T1

T 1

k

ffiffiffiffiffiffiffi
2cl
U 0

r
exp

m1x
2l

� � ð4:16Þ

With this dimensionless variable and Eqs. (3.1)–(3.3),

the temperature Eq. (2.8) takes the form

ggg þ Prfgg � Prm1fgg ¼ �PrEf 2
gg ð4:17Þ

where

E ¼ U 2
0k

cpT 1

ffiffiffiffiffiffiffi
2cl
U 0

r Uw

U 0

� �4�m1
2

and Pr ¼ c
a

Here Pr is the Prandtl number and E is the Eckert

number.

Boundary conditions on non-dimensional tempera-

ture are

ggð0Þ ¼ �1

gð1Þ ¼ 0
ð4:18Þ

Eq. (4.17) is the same form as Eq. (4.2). However, the

first boundary condition of Eq. (4.3) differs with that of

Eq. (4.18). Following the same procedure as described in

the PST case and making use of the boundary conditions

(4.18) we derive the solution for g(g) in the following

form of confluent hypergeometric function.

gðgÞ ¼ C2e
�S0Pr
gM ½Pr
 � 2; Pr
 þ 1;�Pr
e�S0g�

þ C1e
�2S0g ð4:19Þ

where
1; Pr
 þ 2;�Pr
Þ
and C1 is given by Eq. (4.11b).
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Dimensionless wall temperature g(0) is obtained as

gð0Þ ¼ C2MðPr
 � 2; Pr
 þ 1;�Pr
Þ þ C1 ð4:20Þ

The expression for dimensional wall temperature is

T w ¼ T1 þ T 1

k

ffiffiffiffiffiffiffi
2cl
U 0

s
exp

x
l

� �
gð0Þ ð4:21Þ
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Fig. 2. Velocity profile f ð0Þ
g ðgÞ for different values of viscoelastic
5. Results and discussion

Momentum and heat transfers in a boundary layer

viscoelastic fluid flow over an exponentially stretching

impermeable sheet have been investigated in this paper.

The highly non-linear partial differential equations cha-

racterising flow and heat transfer have been converted to

a set of non-linear ordinary differential equations by

applying suitable similarity transformations. Sequential

solutions of the transformed momentum equation are

obtained by solving the non-linear Riccati type equation

analytically. The zero-order approximate solution for

dimensionless stream function f has been obtained ana-

lytically which satisfies all the boundary conditions.

First-order approximate solution of f also can be derived

analytically in the form of confluent hypergeometric

functions. However numerical solutions for f and fg,

using Runge–Kutta fourth order method with shooting,

match very well in the region which is very close to the

boundary with the solution of zero-order (Fig. 1).

Hence, we consider zero-order approximate solutions

of f and obtain the exact analytical solutions of the heat

transfer equation in the form of confluent hypergeomet-

ric functions. All these solutions involve an exponential

dependence of (i) the similarity variable g (ii) stretching
0
0.0

0.2

0.4

0.6

0.8

1.0

 zero order analytical solution 

 numerical solution

f
0

η (η)

fη (η)

f
0

f

η
1 2 3 4

Fig. 1. Profiles for f(g) and f(g)g obtained from numerical as

well as analytical method when k
1 ¼ 0:1.
velocity Uw and (iii) wall temperature distribution Tw on

the coordinate along the direction of stretching.

In order to have some insight of the flow and heat

transfer characteristics, results are plotted graphically

for typical choice of physical parameters in Figs. 2–5

and Tables 1 and 2. Velocity distributions f 0
g ðgÞ for dif-

ferent values of viscoelastic parameter k
1 are shown in

Fig. 2. From this figure we notice that effect of viscoelas-

tic parameter k
1 is to decrease velocity throughout

the boundary layer flow field which is quite obvious.

Fig. 3 demonstrates the graph of non-dimensional skin-

friction parameterCf vs. viscoelastic parameter k
1 for dif-
ferent values of Reynolds number Re. From this figure

we observe that the increase of non-dimensional visco-

elastic parameter k
1 leads to the decrease of skin-friction

parameter Cf. This is due to the fact that elastic property
parameter k
1.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Re=1

Re=30

Cf

k*1

Fig. 3. Graph of skinfriction parameter Cf vs. viscoelastic

parameter k
1 for differentvalues of local Reynolds number Re.
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Fig. 5. Dimensionless temperature profile g(g) for various

values of Prandtl number Pr and Eckert number E in PHF case.
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Fig. 4. Dimensionless temperature profile h(g) for various

values of Prandtl number Pr and Eckert number E in PST case.

Table 1

Wall temperature gradient �hg(0) in PST case for different

values of Prandtl number Pr, Eckert number E and viscoelastic

parameter k
1

k
1 Pr E �hg(0)

10�9 3 0 2.449

0.2 2.410

10�9 5 3.257

0.2 3.219

10�9 3 2 0.363

0.2 �0.053

10�9 5 0.227

0.2 �0.385

Table 2

Wall temperature g(0) in PHF case for different values of

Prandtl number Pr, Eckert number E and viscoelastic para-

meter k
1

k
1 Pr E g(0)

10�9 3 0 0.408

0.2 0.415

10�9 5 0.307

0.2 0.311

10�9 3 2 1.259

0.2 1.437

10�9 5 1.237

0.2 1.430
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in viscoelastic fluid reduces the frictional force. This re-

sult may have great significance in polymer proceeding

industry, as the choice of higher order viscoelastic fluid

would reduce the power consumption for stretching

the boundary sheet. We obtain the similar effect of

Reynolds number on the skin-friction coefficient as

reduction of viscosity of the fluid result in the decrease

of frictional force or drag force.

The effect of Prandtl number Pr on heat transfer may

be analysed from Figs. 4 and 5 in PST and PHF cases

respectively. These graphs reveal that the increase of

Prandtl number Pr results in the decrease of temperature

distribution at a particular point of the flow region. This

is because there would be a decrease of the thermal

boundary layer thickness with the increase of values of

Prandtl number Pr. The increase of Prandtl number

means slow rate of thermal diffusion. It is obvious that

the wall temperature distribution is at unity on the wall

in PST case for all values of Pr, E and k
1. However, it

may be other than the unity in the PHF case due to adi-

abatic temperature boundary condition. The effect of

increasing the values of viscoelastic parameter k
1 is seen
to increase the temperatures distribution in the flow re-

gion. This is in conformity with the fact that increase

of non-Newtonian viscoelastic parameter leads to the in-

creases of thermal boundary layer thickness. The results

of PHF cases are qualitatively similar to that of PST case

but quantitatively they are different. The graphs reveal

that the effect of increasing the values of Eckert number

E is to increase temperature distribution h(g) in the flow

region in both the cases of PST and PHF. This behaviour

of temperature enhancement occurs as heat energy is

stored in the fluid due to frictional heating.

Numerical values of wall temperature gradient

�hg(0) in PST case for different values of Prandtl num-

ber Pr, Eckert number E and viscoelastic parameter k
1
are recorded in Table 1. The table reveals that the in-

crease of the values of Prandtl number Pr for E = 0

and (E 5 0) results in the increase of the values of wall

temperature gradient �hg(0). We notice that wall tem-

perature gradient �hg(0) is decreased by increasing the
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values of the viscoelastic parameter k
1. The effect of vis-
cous dissipation (E 5 0) is to reduce the wall tempera-

ture gradient �hg(0). Hence, by increasing the values

of viscoelastic parameter k
1 and Eckert number E we

can control heat transfer considerably. Significant in-

crease of Eckert number might reverse the direction of

heat transfer to the stretching sheet.

Table 2 is plotted for the different values of Prandtl

number Pr, Eckert number E and viscoelastic parameter

k
1 for wall temperature g(0) in PHF case. Analysis of the

tabular results shows that as the value of Prandtl num-

ber Pr increases for both E = 0 and E 5 0 the wall tem-

perature g(0) decreases and increasing the values of

viscoelastic parameter k
1 leads to the increase of wall

temperature g(0).
6. Conclusions

A mathematical analysis has been carried out for

momentum and heat transfer in a viscoelastic fluid flow

over an exponentially stretching impermeable sheet.

Highly non-linear differential equations are converted

into a set of ordinary differential equations by applying

similarity transformations and sequential solutions of

the transformed momentum equation are obtained ana-

lytically by solving the non-linear Riccati type equation

repeatedly. Zero-order approximate solution for stream

function f is compared with the numerical solution ob-

tained by employing Runge–Kutta fourth order method

with shooting and desired accuracy has been achieved.

Solutions for heat transfer equation are derived in the

form of confluent hypergeometric function for both cases

(i) prescribed surface temperature (PST) and (ii) pre-

scribed boundary heat flux (PHF). Expressions are also

obtained for dimensionless skin-friction coefficients Cf

and Nusselt number Nu. The derived solutions involve

an exponential dependence of stretching velocity, pre-

scribed boundary temperature and prescribed boundary

heat flux on the flow directional coordinate.

The important findings of the graphical analysis of

the results of the present problem are as follows:

1. The effect of increasing the values of viscoelastic

parameter k
1 is to decrease the velocity throughout

the boundary layer.

2. The effect of increasing the values of viscoelastic

parameter k
1 is to decrease the skin-friction parame-

ter Cf and the effect of Reynolds number is also to

decrease skin-friction coefficient Cf.

3. The effect of increasing the values of Prandtl number

Pr is to decrease temperature distribution in the flow

region.

4. The effect of increasing the values of viscoelastic

parameter k
1 is to increase the temperature distribu-

tion in the flow region.
5. The effect of increasing the values of Prandtl number

Pr is to increase of wall temperature gradient �hg(0)

whereas the effect of viscoelastic parameter k
1 is to

decrease wall temperature gradient �hg(0).

6. We can control heat transfer considerably by increas-

ing the values of viscoelastic parameter k
1 and Eckert

number E. Significant increase of Eckert number

might reverse the direction of heat transfer to the

stretching sheet.
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